
LLNL-CONF-454941

QMDS: A File System Metadata
Management Service Supporting a Graph
Data Model-Based Query Language

S. Ames, M. B. Gokhale, C. Maltzahn

September 14, 2010

The 6th IEEE International Conference on Networking,
Architecture, and Storage
Dalian, China
July 28, 2011 through July 30, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

QMDS: A File System Metadata Management
Service Supporting a Graph Data Model-based

Query Language
Sasha Ames #∗1, Maya B. Gokhale ∗2, Carlos Maltzahn #3

#Computer Science Department
University of California, Santa Cruz

1sasha@llnl.gov
3carlosm@cs.ucsc.edu

∗Lawrence Livermore National Laboratory
2maya@llnl.gov

Abstract— File system metadata management has become a
bottleneck for many data-intensive applications that rely on
high-performance file systems. Part of the bottleneck is due
to the limitations of an almost 50 year old interface standard
with metadata abstractions that were designed at a time when
high-end file systems managed less than 100MB. Today’s high-
performance file systems store 7 to 9 orders of magnitude more
data, resulting in numbers of data items for which these metadata
abstractions are inadequate, such as directory hierarchies unable
to handle complex relationships among data. Users of file systems
have attempted to work around these inadequacies by moving
application-specific metadata management to relational databases
to make metadata searchable. Splitting file system metadata
management into two separate systems introduces inefficiencies
and systems management problems.

To address this problem, we propose QMDS: a file system
metadata management service that integrates all file system
metadata and uses a graph data model with attributes on
nodes and edges. Our service uses a query language interface
for file identification and attribute retrieval. We present our
metadata management service design and architecture and study
its performance using a text analysis benchmark application.
Results from our QMDS prototype show the effectiveness of
this approach. Compared to use of a file system and relational
database, the QMDS prototype shows superior performance for
both ingest and query workloads.

I. INTRODUCTION

While storage systems continue to increase in volume and to
improve in throughput, the organization of user-defined meta-
data has lagged behind and has become a bottleneck for data-
intensive applications. The growth in storage accompanies a
surge in data-intensive scientific computing, in which we have
witnessed thousandfold increases in data volume over the past
decade [1]. Cheaper costs for storage and higher bandwidth per
system has enabled data capture at the required volumes. Much
of the data is stored in file systems using the POSIX interface,
a standard based on the systems first designed fifty years ago,
based on a hierarchal data model for file organization. This
arrangement originated for systems with 10,000s of files, yet
now we store 7 to 9 orders of magnitude greater numbers of
files within a single system.

Raw data growth has been accompanied by an increase
in the capabilities of data analysis, which creates additonal
metadata relating to that data. For instance, the Sloan Digital
Sky Survey [2], [3] (SDSS) is comprised of a collection of
photographic image and spectra files, and a catalog containing
image and instrument metadata, photometric and spectroscopic
object data. While the data size of the raw photographic
imagery has grown from 2.3 TB to 15 TB over the span
seven releases, the catalog has grown from being an order of
magnitude smaller than the raw data size to become fourteen
percent larger.

The needs of today’s applications force us to address the
limitations of the POSIX interface, in which the only user-
defined metadata constructs available are the file name and its
location within a hierarchical name space. While hierarchies
have served as a useful organizational tool and still have
benefits, they are deficient [4], in part due to the inability to
express more complex relationships that occur among data. In
contrast, a data model that conveys relationships and extends
hierarchies would be one employing a graph structure. The
graph data model is suitable to many arrangements of data
found in a variety of applications [5]. Graphs fit existing file
systems through subsuming hierarchical tree structures and
have proven useful in experience with ranking algorithms [6]
for search results.

We identify three application domains with examples of
graph metadata:
• Mentioned above, the SDSS catalog metadata contains

some hierarchical organization with additional relation-
ships throughout. Notably, the catalog contains a network
of neighbor relationships between pairs of photometric
objects. All these relationships are conventionally repre-
sented using relational tables.

• The Livermore Entity Extractor [7] (Lextrac) was de-
signed as a benchmark for text analysis. The application
uses text document corpuses, which are processed within
the extractor application to find significant entities and
entity co-occurrences. These are significant pairs of enti-

ties within a particular document with a distance metric.
Their discovery results in a factor of ten greater volume of
metadata stored over the original text data size. Relation-
ships among the documents, entities, and co-occurrences
form a graph that must be managed and queried. The
relationship between documents and entities is bipartite,
and this metadata appears difficult to partition.

• Metadata from HPC performance tools, such as Open-
SpeedShop tool [8], related provenance information from
the HPC application build environment, and source
file version control are presently managed in separate
schemes for each. The graph data model fits the inter-
relationship of code objects, data collected by the tool,
and the provenance of the build process from executable,
object binary files and source code. Moreover, there is
no established methodology for developer management
of all this data, so each developer may choose an ad hoc
scheme of his own [9].

Applications also need to locate files, and POSIX paths are
limited in that capability. Paths require exact knowledge of
location, namely the directory and file name components, in
contrast to a query interface that allows many combinations
of terms or expressions that could result in desired data. It is
important for such an interface to fit the data model, thus a
query language for searching a graph data model would be
appropriate.

Applications instead have employed their own solutions for
file metadata management separate from file systems, often
using relational databases given the strengths of the relational
model, SQL language, and mature technology. The use of
relational databases requires a schema and index configuration
specifically for every application. When the application’s data
structures change, the database design must be modified. On
the other hand, file systems are generally configured and tuned
for the shared use of a variety of applications. Moreover,
when applications must use two systems, the file system and
the database, their dual use creates management problems.
For instance, references to files within the databases must be
updated to reflect changes in file systems.

In this paper, we discuss an exploration of our approach to
the problem: the use of a graph data model for representing
file system user-defined metadata and a query language for
retrieval. The purpose of this approach is to provide man-
agement of user-defined file metadata along with data under
a single file system interface, delivering a common service
across applications. Applications would be able to offload
their metadata management needs to the service, alleviating
the need for their own solution. This arrangement would
benefit applications by reducing their code complexity, by
virtue of not having their own custom metadata management
components. A second benefit is improved opportunities for
interoperability among separate applications. For instance in
HPC code development, developers would have the opportu-
nity to consider the metadata from several performance tools,
such as OpenSpeedShop, provenance from their build process
and version information.

This approach we have named QMDS, which we envi-
sion as extending existing metadata services (MDS), adding
Queriability. However, for the purpose of exploring the graph
data model and query language for this paper, we have
implemented a single-host FUSE file system service. We
have limited the scope of our research to retrieving files
and attributes of files according to user-defined metadata and
relationships among the files. We consider changes to POSIX
systems calls a s a consequence to our approach of extending
POSIX with a query interface, but file data I/O is not part of
the work. Also, we do not try to solve general graph problems,
such as a shortest path algorithm, nor are standard file system
operations a focus of this work.

Prior experience in attempting to use a relational
database [10] has led us to our approach of implementing our
own store for graph-structured file system metadata [11], and
we have continued to pursue that approach in this work. Our
performance results presented in section V show a validation
of our choice by exhibiting superior performance of our system
against that of a relational database.

The contributions of this paper are: (1) the design and
prototype implementation of QMDS based on a graph data
model (2) the design and prototype implementation of the
Quasar query language specifically designed for the graph
data model. (3) quantitative evaluation of a QMDS prototype
compared to a hierarchical file system plus relational database.
Our evaluation considers the Lextrac case study described
above, and we use its metadata for examples of the data model
and queries from our language throughout the paper. We have
chosen it because of its relatively large metadata to data size
and complex graph structure.

II. RELATED WORK

Vast growth in data has been accompanied by the need
to grow individual file system namespaces, resulting in dis-
tributed file systems. Some only distribute the data, while the
metadata management of files and the hierarchical namespace
can be handled by a single host. However, advances in
distributed metadata management have shown that a direc-
tory hierarchy can span multiple nodes efficiently [12]. This
approach assumes a hierarchical name space with few non-
hierarchical links.

The extended attribute (x-attr) API gives applications some
ability to store their own metadata for files, but the API
is not widely adopted. The API works on a per file basis,
i.e., attributes are retrieved given a path to a file, but lacks
query functionality for files based on attribute values. Seman-
tic File Systems [13] provided that functionality by placing
attribute-based naming into path expressions. The Logic File
System [14] provided and interface that use boolean algebra
expressions for defining multiple views of files. However,
these concepts have not been adopted into mainstream file
systems. Other approaches have a separate systems interface to
handle searching and views of files, namely the Property List
DIRectory system [15], Nebula [16], and attrFS [17]. Some
systems combine POSIX paths with attributes [18], [19] and

directories with content [20]. Most recently, Prospective pro-
vided a decentralized home-network system that uses semantic
attribute-based naming for both data access and management
of files [21]. While many of these system maintain the
equivalent of extended attributes on files before these became
part of POSIX, none provide edges to denote relationships
among files.

There are a variety of ad hoc schemes in existence today to
attach user-defined metadata with files, such as a distinguished
suffix, encoding metadata in the filename, putting metadata as
comments in the file, or maintaining adjunct files related to
primary data files. Search within file systems has, in practice,
often relied on command-line utilities such as ls, find and grep.

Examples of searchable file systems using relational
databases and keyword search engines include Apple’s
Spotlight[22], Beagle for Linux [23], and Windows FS In-
dexing [24], where Spotlight also includes application-defined
attribute-based searches for files. These systems provide full-
text search, have indexing subsystems that are separate from
the file systems, as opposed to index management within the
same module or process as file system metadata management.
A recent experimental file search system, Spyglass [25],
provides attribute indexing using K-D trees. The authors
also compare the performance of Spyglass with a relational
database and find that Spyglass has superior query perfor-
mance when executing joins over multiple attributes, but the
research focused on traditional file attributes. None of the
above systems allow for search over relationships.

PASS [26] proposed how provenance data could be managed
behind a kernel-based interface and tied into the file system.
Their model includes relationships among files, but they do
not keep name-value pair attributes on these relationships.
They restrict the scope of the relationships to the provenance
domains. We propose a metadata store that manages any
conceivable relationship between pairs of files.

Holland et al, propose a query language for Prove-
nance [27]. They choose the Lorel language [28] from the
Lore system as a basis for provenance. The Lorel data model
(OEM) differs from ours, as it requires class definitions and
treats attributes and data nodes as the same.

Many researchers have proposed graph query languages
[29]. Of those that have been accompanied by backing im-
plementations, relational databases were used to implement
the languages. Experience with a relational database and
graph language have not yielded suitable performance [30].
Moreover, there has been a trend towards the use of graph-
based data model over relational systems due to inability
of RDBMS to manage graph-structured data [31] and the
growing interconnectedness of real-world data [32]. In the
introduction to this paper, we identify several applications
which use relational databases to represent what is essentially
graph structured metadata, however, these applications are
configured with schemas specific to their needs rather than
a general graph schema.

There are several RDF triple stores, for instance, 4store [33]
and RDF3X [34], which support the SPARQL language [35].

File-Node
 (Parent)

File-Node
 (Child)Edge-Link

Attributes:
KeyName
= Value

. . .

Attributes:
KeyName
= Value

. . .

Fig. 1. The QMDS graph data model contains files, links and attributes.

However, RDF is a different data model than what we are
proposing in that RDF has only nodes and edges; there is
no concept of an attribute. Moreover, these engines do not
support range queries, which makes their use very limited
for our workloads. Neo4j [36] is an example graph database
system that features a simple Java API. This approach requires
that application developers program graph queries and handle
complex operations, rather than use a robust query language
interface that removes the complexity and handles optimiza-
tions for the application. The study performed in [37] describes
some strengths, but points out some critical shortcomings of
Neo4j.

III. LOGICAL DESIGN

Our goal in exploring QMDS is to examine its potential for
the analysis and management of text, scientific and provenance
metadata. In this section, we describe our logical data model
and query language for QMDS.

A. Data Model

Our data model for file system metadata is a directed
graph with attributes on nodes and edges. Nodes in the graph
can represent files, and this allows the system to manage
relationships among files. We call our directed edges links,
connecting parent and child nodes. Attributes are name-value
pairs, like POSIX extended attributes. These may be placed on
both nodes and links. Moreover, multiple edges are permitted
between any pair of nodes. Figure 2 shows example file
metadata structured using these constructs. In the example,
the attributes placed on links contain the provenance of the
relationship. For instance, the depicted rightmost link was
created by the Stanford Extractor, while the leftmost link was
from the Unified Extractor.

No application-specific “schemas” need to be explicitly
defined for nodes, edges and attributes, and no classes must
be defined for node objects, as one would need in most
object-oriented systems. This gives a degree of flexibility for
applications to change their metadata requirements and allows
for heterogeneity within a single system. A heterogeneous
approach to managing metadata gives all applications the same
tools to manage relationships.

File attributes include the name of the file and are not
necessarily unique. Moreover, none of the attribute values must
be unique for a particular attribute name, except for system-
assigned IDs on files and links. This provision allows for

LinkType = HasEntity
Extractor = Stanford

Confidence = 0.8
Begin = 53

. . .

LinkType
 = HasEntity

Extractor
= Unified

. . .

LinkType
 = HasCo-
Occurence

LinkType
 = HasEntity

LinkType
 = HasEntity

FileType
 = NewsDocument
FileName
 = N20090203
IsTabular = Yes

NodeType
 = SemanticTag
SemanticType
 =Organization
SemanticValue
 = NYSE

NodeType
 = CoOccurence
ProximityScore
 = 25

NodeType
 =SemanticTag
SemanticType
 = Location
SemanticValue
 = New York

Fig. 2. An example of files (nodes), links (edges) and attributes from the
Lextrac case study application. Circles represent files, arrows represent links.

different files using the same name in multiple views, such
as for different applications, users or versions. File nodes act
as directories using links to represent directory membership.

B. Query Language

Our query language, called Quasar, provides retrieval capa-
bilities within graph-structured file system metadata.The query
model centers on processing of sets, in which elements of
the sets are files (nodes of the graph). Sets can be identified
by particular attributes (e.g., all .pdf files) or the parents or
children of a particular file. Each query produces a result set
of nodes, which in context of file system metadata are virtual
directories. Traditional set operations from set algebra can be
applied to sets of files, these operators being set intersection,
union and set difference. The other operations, attribute match,
neighbor match, and navigation are specific to the query
language and described below.

1) Operators: The attribute match operator, indicated by
the MATCH keyword provides for identification and conjunc-
tion based on sets of files, each denoted by set elements that
contain the attributes specified in the query expression. The
match can be a single, a range, or a set of specified attributes.
Conjunction of sets through the match operator allows for
attribute-based refinement of collections of files. We provide
for the conjunction of multiple attributes within a single match
operator clause using the semicolon meta-character.

The neighbor match operator enables refinement of a set of
nodes based on the condition of particular parents or children
to the nodes within the set. In a simple case, a neighbor match
operator might refine a set based on a particular attribute
on the parents or children of the nodes in the initial set. A
Quasar expression using a neighbor pattern match looks like:

MATCH FileType = NewsDocument CHILD

{ MATCH SemanticType = ’Location’ }

where an input set containing files with [FileType,
NewsDocument] are filtered to only those whose children
match [SemanticType, Location]. A pattern match operator
may also specify constraints on edges to parents or children
based on edge attributes. The keywords PARENT or CHILD
indicate neighbor pattern mach expressions. The brace
meta-characters hold a sub-query

The navigation operator manipulates one or more elements
in a set (node of the graph) by the action of “following
edges.” Navigation can go either in the direction of the edge
(from parent to child), or vice-versa. Navigation can be
constrained to only follow edges that meet particular criteria,
as specified via attributes placed on the particular edges.
The navigation operation (NAVIGATE) follows links in their
”forward” direction, from parent to child. There is also a
corresponding operation (BACKNAV) to traverse from child
to parent. For example, the query expression

MATCH FileType = ’NewsDocument’
NAVIGATE Extractor =Unified

will change the result set from all files with [FileType,
NewsDocument] following links with the attribute [Extractor,
Unified].

For attribute retrieval, the language features presentation
functionality that returns attributes of files or links in a
tabular-string format, as is common functionality for various
query languages. Attribute names are specified with OUTPUT
keyword-based clauses within the queries. Each clause
contains the name of one ore more attributes of whose values
will be returned in the tabular output. Each row in the output
corresponds to an element in the result set and each column
contains an attribute value corresponding to the attribute name
in the output clause. For example, the query expression:

MATCH FileType = ’NewsDocument’
OUTPUT FileName

lists all the files of [FileType,NewsDocument] by the
values corresponding to their FileName attributes.

2) Examples: To illustrate neighbor pattern matching,
suppose we have a file system containing some files with
attribute/value pair [FileType, NewsDocument] and other files
with attribute/value pairs [NodeType, SemanticTag]1 Each
“NewsDocument” links to the “SemanticTag” files that it
contains. Each link is annotated with a “LinkType” attribute
with value “HasEntity” ([LinkType, HasEntity]). Our input file
set consists of NewsDocument files that are tabular (files with
[FileType, NewsDocument], [IsTabular, yes] attribute/value

1This example comes from our workload evaluation application (see Section
??), in which text documents are annotated with semantic entities found
within. We represent the semantic entities as directories linked from the file
containing the text, and label such directories as “nodes”, hence the use of
the “NodeType” attribute.

pairs). We refine the file set context by a neighbor pattern
match that matches links of type “HasEntity” ([LinkType,
HasEntity]) and child files that have [NodeType, SemanticTag]
and [SemanticType, Location]. The output file-set context will
contain only those NewsDocuments that link to SemanticTags
matching the above criteria. In Quasar, the query expression is:

MATCH FileType = ’NewsDocument’
CHILD LinkType = ’HasEntity’
{ MATCH NodeType = ’SemanticTag’ ;
SemanticType = ’Location’ } .

Similarly, MATCH FilleType = ’NewsDocument’
CHILD { MATCH SemanticType = Location ;
SemanticValue = ’New York’ } OUTPUT FileName

specifies properties that child nodes must match. First,
files of the specified FileType are matched. Second, we
narrow down the set of files by matching child nodes with
the specified SemanticType and SemanticValue file attributes.
Finally, using the presentation operator, we return the set
according the document FileName attribute value.

MATCH FileName IN ’N20090201’ ˜ ’N20090301’
NAVIGATE LinkType = ’HasCoOccurence’ OUTPUT
ProximityScore

The above query, first, matches files in the specified
range (in this example files named by a date between
February 1st and March 1st, 2009, and the IN keyword
paired with the tilde meta-character indicates a range query
predicate). Second, it traverses links from the matching
source files (NAVIGATE), only following links that match
the [LinkType, HasCoOccurence] attribute. Finally, it lists the
resulting file set by the ProximityScore attribute.

IV. SERVICE DESIGN AND IMPLEMENTATION

To explore the graph data model and query language in
practice, we have implemented a prototype of QMDS. The
prototype system runs in a single-host FUSE file system.
Use of a single host for metadata is comparable to several
distributed file systems used in production today that have
single-host name nodes: HDFS, PVFS [38]2, and Lustre [39]
(in practice).

As an enhancement to POSIX, the query language interface
works with existing file system operations: it provides file and
virtual directory handles as responses to queries. Additionally,
a “synthetic” file interface (comparable to Linux /proc)
provides for efficient bulk metadata updates and access to
attribute-oriented query results.

A. Overview

As shown in Figure 4 QMDS is implemented as a file
server running in user space using the FUSE interface [40].

2File metadata can be distributed but directories are managed on a single
host

Superblock
(keeps FS stats
and pointers to

other structures)

Files
Table

Links
Table

File
Attribute

Index
RB Tree

Link
Attribute

Index
RB Tree

Lists of File and
Link IDs (Postings)

Link
Attributes

File
Attributes

Parent/
Child ID

Lists

Attribute
Names
Table

Value
Strings
Storage

Fig. 3. The schema of the QMDS metadata store is optimized for attribute
matching, neighbor pattern matching, and navigation.

FUSE
Library

File
System

Interface

Metadata
Store / Index

Manager

Query
Parser

Query
Processor

File Data
Placement

Kernel Interface
(System Calls)

Virtual File
System

Operating System Kernel

QMDS File System Software (user space)

File Data
Storage

Metadata
& Index
Storage

FUSE
Kernel
Module

Requests /
Responses

File System Operations

Reads
Writes

FS
operations

lookup
opendir

Parsed Query
Info

File IDs,
directory entries

Stat
X-Attrs

Term
Lookup

Posting
lists:

file / link
 IDs

Fig. 4. The QMDS prototype software architecture is a single-host file
server exporting a FUSE interface that allows clients to the POSIX file system
interface to pass Quasar expressions.

Clients pose standard POSIX file system operations to the
Kernel Interface via systems calls. The Virtual File System
forwards the requests to the FUSE Kernel Module, as is
standard for mountable file systems. The FUSE client kernel
module serializes the calls and passes the messages to the
QMDS Software running in user space.

The FUSE Library implements the listening part of the
service which receives the messages from the kernel and
decodes the specific file system operations. The QMDS File
System Interface implements handler routines for the various
file system operations and interacts with the other components
of the system.

To obtain a file ID, the client submits a Quasar expression,
which is parsed by the Query Parser and then passed to the
Query Processor. The processor generates a query plan and
then looks up query terms in the Metadata Store / Index

Manager. The MS/IM returns posting lists of relevant files
or link ids, or may filter attributes for a particular file. The
query processor uses standard query planning strategies using
statistics on the stored metadata. The store manager uses the
underlying file system to store metadata structures. Once the
query processor has computed an answer to the query, it
returns the list of ids to the file system interface.

Other file system operations may go directly from the
interface operation handler to the data or metadata manage-
ment components. Stat and attribute update/retrieval calls go
directly to the store manager, once the specified file has been
looked up. File data operations (read/write) go to a File Data
Placement manager. In our QMDS prototype, this module
maps file data to files stored within an underlying local (ext2)
file system. Only non-zero length files3 are represented in the
ext2 file system. Zero-byte files that contain only attributes
and links are managed solely by the metadata store and are
therefore significantly cheaper to manage than regular files.
For POSIX compliance, a zero-byte file with links is equivalent
to a directory.

B. QMDS semantics for directory/file operations
QMDS follows POSIX semantics as closely as possible,

and extend the semantics as needed for operations that in-
volve metadata and links. In particular, as many file system
operations require a pathname to a particular file, operations
posed to QMDS may specify a “pathname query”, which
accepts any valid Quasar expression, including POSIX paths.
A consequence of this change is that the semantics of some
of the POSIX file system calls that concern metadata must
change as well.

A high level description of QMDS behavior for common
file system calls is as follows:

stat Looks up the pathname query. If stat matches a
single file, it returns the POSIX attributes for that file from
the metadata store. If more than one file matches, stat returns
attributes for a virtual directory.

open (create, write) Looks up the pathname query. If
there is no match, open creates a new file object in the
metadata store, stores the name and attributes given in the
query expression, and looks up a parent file. If a parent is
found, it creates a link with the parent as source, a new file
as link target, creates a file in the underlying file system for
data storage, and opens that file. If the initial query matches
a file, it opens the corresponding underlying file and truncates
it. Finally, it returns the handle to the opened file.

open (read) Looks up the pathname query. If exactly
one result is found and it is not flagged as a directory, it
opens the corresponding data file in the underlying file system.
Otherwise, it follows the opendir semantics.

mkdir Same as “open create”, but sets the “DIR” flag in
the file object, but does not create or open an underlying file
as no data storage is necessary.

opendir Looks up the pathname query. For each query
result, opendir looks up particular attributes to return for the

3or zero-byte files without links

result based on a “ListBy” operator in the query. Opendir
returns a directory handle to the client. It stores the attribute
value strings in a cache for successive readdir operations until
the directory handle is closed.

readdir Retrieves the next directory entry (or query result)
in the result cache.

close(dir) Passes file handles to the underlying file system
to close the file. Frees temporary structures used to represent
query results for directory listings.

chmod/chown,time Looks up the pathname query. Then,
modifies the permissions, owner, or time attribute for the result
file’s object structure.

rename Depending on the result of the pathname query,
will do one of the following: (1) change the name (or other)
attribute for a file, without affecting its parents/children, (2)
change the parent of a file, or (3) update the affected link(s)
and their associated attributes. The pathname must resolve to
a single source file.

unlink Looks up the pathname query. If the query matches
a single file, it also looks up the parent to the file within
the query, determines the link between parent and child, and
removes that link from the metadata store, including all of its
link attributes.

A consequence of changing attributes of a file is that it might
invalidate the path name that an application uses to refer to
that file. For example, if an application names a file by the
attribute k = v and then subsequently changes its attribute
to k = v′, the original name does not resolve to that file
anymore. One way to provide greater name space stability is to
(1) use QMDS assigned immutable file or link IDs to address
files (equivalent to inode numbers), as both are searchable
attributes in QMDS, or (2) make a unique, immutable object
ID for each file and link available as attributes and include
object IDs into the Quasar name space (if applications need
the convenience of their own ID schemes). Either scheme
provides applications with names that are immune to any
metadata changes. The second approach is already used in
existing systems, for instance, document databases use DOI.

C. Metadata Storage

Our QMDS prototype features a metadata store and index
manager using structures tailored to our graph data model. The
data structures of the metadata store are a collection of arrays,
sorted lists, and red-black trees. We have chosen these struc-
tures based on experience with previous in-memory graph file
system metadata management [11] and search engine design
for indexing [41], [42]. These data structures are backed by
memory-mapped files in an underlying file system. Each type
of data structure is assigned to a separate memory-mapped file,
each with its own allocator. We have used configurations with
five or thirteen separate files. This design is suited for storage
class memories, as their use has been suggested for metadata
storage[43], based on their lower latencies for random access,
as opposed to conventional disk-based storage.

The data structures are optimized for query operations
expressible in Quasar, namely attribute matching for a given

set of files, neighbor pattern matching, and navigation (see
Figure 3). The metadata store has a Superblock, which contains
references to the other structures within the store and some
global statistics used for query optimization, such as the total
numbers of files or links. The File Table is an array and
maps file IDs to file objects (similar to inodes), each of which
includes lists of File Attributes, pointers to a list of parents
and a list of children (recall that “parents” are files with links
pointing to the current file and “children” are files to which
the current file’s links point). Within the list (Parent/Child ID
Lists) entries, each parent and each child is represented as a
tuple containing a file ID and a link ID. The link source and
target need not be stored explicitly as they can be accessed
through the File Table. The Link Table is an array that maps
link IDs to each Link Attribute list. The File and Link Attribute
Indices are red-black trees, and they map attributes (name-
value pairs as keys) to the Lists of File and Link IDs (Postings).

File/link attribute names within the file/link tables and
indices contain string references to entries in the Attribute
Name Table, a hash table. String attribute values refer to a
common Value Strings Storage shared with the indices. When
any file or link attribute is added, the software determines if the
attribute name exists in the attribute name table, via a standard
hash function, and for string values, if the value is present, via
an index lookup. Numeric values (integer and floating point)
are stored directly in the file attributes.

To further illustrate how these structures are used, consider
the match operator. Single Quasar match operators find the
search attribute name and value in the file attribute index tree.
Once the attribute structure is located, the list of matching
file IDs is returned. In the case of match operators with
multiple attributes, the query processor determines the best
of the following two strategies:

1) multiple lists should be intersected (computation time
O(n1 + n2), where n1 and n2 are the lengths of lists)

2) the initial list of file ids should be filtered by looking
up attributes via the file table (constant time lookup for
each attribute, thus O(K × n1)).

The design and careful implementation of metadata man-
agement is key to the QMDS prototype. Unlike schemata for
relational databases, which are tailored to each application,
QMDS maintains a single metadata store schema for all
applications.

D. Query Planing and Processing

In order to optimize for the two strategies shown above,
in cases where there are multiple attribute query terms for an
individual query operation, the query planner orders the terms
from smallest to largest, based on the numbers of nodes or
edges that match the particular attributes. This process enables
the query processor to select the more efficient of the two
strategies, when multiple terms are encountered in a query
match operation. In our current prototype implementation,
both strategies and the query processor’s ability to select which
to perform are implemented only for attribute match query
operations.

Filtering by attribute terms on navigation and neighbor
match operators only use strategy (2). However, the query
planner can estimate the potential cost for those operators
based on information from the index reflecting node or edge
counts of attribute query terms, including range query predi-
cates. Each operator is assigned a score. Then, the operators
might be reordered, based on a heuristic comparison function
that takes the scores as input. This behavior is analogous to
query plan selection that occurs with the query optimization of
relational databases. The key difference is that the navigation
operation follows pointers within the QMDS metadata store,
unlike joins that consider logical references among tables.

V. EVALUATION

In this section, we report on results of ingest and query
experiments using the Lextrac application. In its original con-
figuration, Lextrac writes document metadata to conventional
files in initial analysis phases, followed by a phase that writes
the data to a searchable SQL database. We use PostgreSQL 4.3
in our experiments, and refer to that configuration as FS+DB.
To produce a scalable ingest, we have configured PostgreSQL
with a schema specific to the Lextrac metadata structure and
create indices on several of the columns. To properly generate
the graph structure, the ingest application must leverage the
index and query functionality of the metadata storage system
(the SQL database), so incremental indexing is important.

We extended Lextrac so it supports the QMDS storage
interface in addition to the POSIX I/O interface and can take
full advantage of the QMDS data model. This is an example
where an application (i.e., Lextrac) can offload its metadara
management needs to QMDS. In the second configuration
(labeled “QMDS”), we have replaced the file system and SQL
database with our QMDS prototype (with its backing store also
acting as a store for file data). In this configuration, the final
SQL database building phase is unnecessary.

Our evaluation was conducted on a Dual-Core AMD
Opteron 2.8 GHz, 4 socket server with 32GB main memory
running Linux kernel version 2.6.18 with a 250GB SATA
drive. For the FS+DB/SQL configurations discussed in this
section, we have configured PostgreSQL with a schema spe-
cific to the Lextrac application. We create indexes on all
columns within this schema to provide suitable SQL query
performance. (Experiments with PostgreSQL without indices
have resulted in performance so uncompetitive, that a compari-
son would best be characterized as a “straw-man”.) In addition,
we run the database without transactions or isolation.

A. Ingest

Table I shows the results of our document ingest experi-
ments using 800,000 documents. The application configured
to write to QMDS completes in close to 2.4 times faster than
the FS+DB configuration.

While the storage space required for QMDS metadata
is somewhat larger, it does not need the additional space
overhead for temporary files to write metadata prior to writing
that metadata into PostgreSQL. Moreover, we are aware of

System QMFS FS+DB
Ingest Time (Hours) 23.78 58.95
Metadata Size (GB) 43 30

Temporary Size (GB) 0 14

TABLE I
PROPERTIES OF LEXTRAC METADATA STORAGE (QMDS AND FS+DB),

800000 REUTERS DOCUMENTS. THE GRAPH SIZE IS APPROXIMATELY 100
MILLION NODES AND 350 MILLION EDGES, WHILE THE ORIGINAL TEXT

DATA SIZE IS 3.8 GB. THUS, THE METADATA SIZE IS ROUGHLY AN ORDER

OF MAGNITUDE LARGER.

instances in which space might be better used within QMDS
metadata storage. One example is that given that we run on
64-bit architectures, we store 64-bit pointers within our data
structures. Much space savings should be possible though
storage of smaller, relative addresses. We consider this an
implementation issue that can be resolved as future work. In
addition, we have determined that many of our data structures
are compressible using standard techniques.

We have unsuccessfully attempted to implement the graph
data model using a SQL database. We configured PostgreSQL
with a general schema for the graph data model consisting of
four tables: files, links, file attributes, link attributes, in contrast
to the specific schema that we created for Lextrac. Standard
indices were configured for all columns within the tables.
However, the ingest times were not able to scale. The largest
size attempted with this configuration was 20,000 documents
in the Lextrac reuters corpus, and its processing takes over
24 hours. In contrast, the PostgreSQL schema configured
specifically for Lextrac takes about a half-hour for processing
with that sized workload.

In another attempt to use common database software to
represent and store our graph data model, we configured
our prototype to use BerkeleyDB as a storage layer for
metadata and indices. The purpose of constructing a Berke-
leyDB implementation was to evaluate the benefit of using
a highly optimized library with support for out-of-core data
structures as the underlying QMDS access mechanism. While
the structures appeared to exhibit scalability for small numbers
of documents, our data ingest experiment did not complete
after 36 hours of processing with a 100,000 document work-
load. These result reinforce our position to develop a custom
metadata store and index manager for a graph data model.

B. Query Experiments

The query study uses query templates Q0 – Q4 represen-
tative of queries that would be applied to the document set.
Below we describe these query templates with examples that
follow Figure 1. Our goal in selecting these query scenarios
is to stress both searches for files and semantic querying
capabilities of the metadata managed by QFS: of the query
templates presented here, Q0−Q1 return files and Q2−Q4
return metadata items.

Q0 Find all documents that are linked to a particular

entity. Example: Find all documents linked to a place
“New York.”

Q1 Find all documents that link to both entities X and
Y that have a particular proximity score between
them. Example: Find all documents that link to a
place “New York” and organization “NYSE” with
co-occurrence of proximity score “25”.

Q2 Find all entities related to entity X in documents with
names in a particular range and whose proximity to
entity X has a score of Y . Example: find entities
co-occurring with “New York” in documents with
names in the range “N20090101” – “N20090331”
whose proximity score with “New York” is ”25”.

Q3 Find all proximity scores within a particular range
relating two particular entities in documents with
names in a particular range. Example: find the prox-
imity scores in the range of ”20” – ”30” relating
“New York” and “NYSE” in documents with names
in the range of “N20090101” – “N20090331.”

Q4 Find ALL proximity scores (no range constraint
unlike Q3) relating two particular entities in doc-
uments with names in a particular range. Example:
find the proximity scores relating “New York” and
“NYSE” in documents with names in the range of
“N20090101” – “N20090331.”

An example of a Q0 query in Quasar:

MATCH SemanticType = ’Location’ ;
SemanticValue = ’New York’
BACKNAV MATCH FileType = ’NewsDocument’
OUTPUT FileName

A more complex Q1 query example:

MATCH SemanticType = ’Location’ ;
SemanticValue = ’New York’
BACKNAV MATCH Proximity = 25
CHILD { MATCH SemanticType = ’Organization’ ;
SemanticValue = ’NYSE’ }
BACKNAV MATCH FileType = NewsDocument
OUTPUT FileName

All query classes contain SQL queries and correspond-
ing Quasar queries with the same general language-specific
clauses. For each SQL query, we select literal values for
the WHERE clauses and then use the same values for the
corresponding Quasar query.

For the query workload experiment Q0, literal query terms
(the entity values) were selected from subsets of the terms
appearing in the data. The entire collection of terms was sorted
by frequency of occurrence in the document set, and then
the subset was created by selecting terms from the sorted
list according to either an arithmetic or geometric series. The
arithmetic series favors terms with low document frequencies
(as are a majority of entities), while the geometric series

Query Class
Q0 Q1 Q2 Q3 Q4

0

0.1

0.2

0.3

0.4

0.5
QFS
SQL

File Queries Semantic Queries

1+ results

7.
2

s

0.
97

s

0.
74

s

Query Class
Q0 Q1 Q2 Q3 Q4

0

0.1

0.2

0.3

0.4

0.5
QFS
SQL

4.
8

se
co

nd
s

Query Class
Q0 Q1 Q2 Q3 Q4

Qu
er

y R
es

po
ns

e
Ti

m
e

(s
)

0

0.1

0.2

0.3

0.4

0.5
QMDS
SQL

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
M

ea
n/

St
d

De
v

(s
)

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. Mean query times for our five classes of queries comparing QMDS
(left bars) with PostgreSQL (right bars).

samples from most frequent to least. Our preliminary work
with queries indicated that the more frequent terms resulted in
longer query times than the infrequent terms, due to processing
of long lists of results. Thus, we developed this process to
provide a meaningful variety of terms to use in the queries,
as simply selecting the query term at random should favor the
majority of entity-value terms, which correspond to relatively
few documents. Specifically, our query test suite for Q0 selects
entity values based on combining the arithmetic and geometric
series, split evenly between each.

For Q1−Q4, We follow a different procedure to generate
their query terms, which might be one or two entity values, a
proximity score, range of scores or range of documents. For
each query, we randomly choose a document co-occurrence,
that is a 4-tuple consisting of a document, a pair of entities,
and the proximity score for the pair. This procedure guarantees
us at least one valid result.

These experiments were run with the 800,000 document
corpus used in the ingest experiments. We only used queries
that have at least one result returned in the measurements
discussed below. QMDS answers empty-result queries 10 to
40 times faster than PostgreSQL, and this we attribute to an
optimization we made in the QMDS query planner to verify
all attribute search terms in the index prior to processing the
remainder of the query.

Figure 5 shows the mean query response times for each
class4. The variance for each class is due to different process-
ing times from the use of a variety of literal values within each
class. We have written in the very large values that would not
otherwise fit into the chart with a reasonably y-axis scale.

For our simple class of query, Q0, QMDS answers the
queries 4 times faster on average than PostgreSQL. We at-
tribute the QMDS speedup for Q0 to the use of the navigation
operation over the relational join operations needed to combine

4These measurements were made on ”warm” systems, both with QMDS
and PostgreSQL.

tables and arrive at the relevant results.
For Q1, more complex than Q0 in terms of query operations

(joins in SQL), and also locates document files, QMDS an-
swers the query on average 200 times faster than PostgreSQL.
We suspect that this class of query is particularly tough for
the SQL query optimizer due to a relatively very large table
of proximity scores, where there are millions. Indexing this
table can only help a little because there are fairly few (about
50) individual score values in the index. The database, then
must scan all the matching values and join those with the
other tables. In contrast, the QMDS query processor simply
navigates to the entries corresponding to nodes in the graph
with the matching values, producing the observed speedup.

In the other three cases, Q2−Q4, the queries run on average
about 5 times faster using QMDS than using PostgreSQL.
These are semantic queries that return particular document
metadata: entity values or entity proximity scores. For these
cases, PostgreSQL leverages the document ranges to produce
better query plans, but as with Q0, the SQL joins do not
perform as well as QMDS navigation. In summary, as query
complexity increases in terms of relative query complexity,
QMDS query performance remains roughly constant, while
PostgreSQL must spend additional time processing the queries.

The error bars in the figures show that both systems have
some degree of variance to its response time. Results for
Q0 in both systems can be directly attributed to the number
of documents that match the requested entity in each query,
subsequently corresponding to the number of results returned.
For Q1, there are two entities involved in the query, so
the sum of the number of documents corresponding to each
entity is correlated with an upper bound to the response time,
while there is a constant lower bound. The error bar Q2 for
PostgreSQL is shorter than all the others, and we attribute this
to nature of the SQL query and the data: the query planner
leverages a small number of documents in the specified range,
and unlike the other complex queries, there is only one Entity
term to match, yielding a less expensive join in most cases.

VI. CONCLUSION

In this paper, we present our rationale for managing user-
defined metadata in a file system metadata service using a
graph data model. We describe the data model, the query
language and the metadata storage design of our prototype
system, QFMS. Using a text document data mining applica-
tion, we evaluate our prototype system’s performance on ingest
and query workloads.

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol.
323, no. 5919, pp. 1297–1298, March 2009.

[2] M. J. Raddick and A. S. Szalay, “The universe online,” Science, vol.
329, no. 5995, pp. 1028–1029, August 2010.

[3] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg, “The sdss skyserver: public access to
the sloan digital sky server data,” in SIGMOD ’02: Proceedings of the
2002 ACM SIGMOD international conference on Management of data.
New York, NY, USA: ACM, 2002, pp. 570–581.

[4] M. Seltzer and N. Murphy, “Hierarchical file systems are dead,” in
HotOS XII, 2009.

[5] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD ’10: Proceedings of the 2010 international conference on
Management of data. New York, NY, USA: ACM, 2010, pp. 135–146.

[6] C. A. N. Soules and G. R. Ganger, “Connections: using context to
enhance file search,” in Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05). New York, NY, USA: ACM
Press, 2005, pp. 119–132.

[7] J. Cohen, D. Dossa, M. Gokhale, D. Hysom, J. May, R. Pearce, and
A. Yoo, “Storage-intensive supercomputing benchmark study,” Lawrence
Livermore National Laboratory, Tech. Rep. UCRL-TR-236179, Nov.
2007.

[8] T. K. Institute, “Open—speedshop - overview,”
http://www.openspeedshop.org/wp/, 2011.

[9] M. Schulz, “Personal communication,” November 2010.
[10] A. Ames, N. Bobb, S. A. Brandt, A. Hiatt, C. Maltzahn, E. L.

Miller, A. Neeman, and D. Tuteja, “Richer file system metadata
using links and attributes,” in Proceedings of the 22nd IEEE
/ 13th NASA Goddard Conference on Mass Storage Systems
and Technologies, Monterey, CA, Apr. 2005. [Online]. Available:
http://www.ssrc.ucsc.edu/Papers/ames-mss05.pdf

[11] S. Ames, N. Bobb, K. M. Greenan, O. S. Hofmann, M. W. Storer,
C. Maltzahn, E. L. Miller, and S. A. Brandt, “LiFS: An attribute-rich
file system for storage class memories,” in Proceedings of the 23rd
IEEE / 14th NASA Goddard Conference on Mass Storage Systems
and Technologies. College Park, MD: IEEE, May 2006. [Online].
Available: http://www.ssrc.ucsc.edu/Papers/ames-mss06.pdf

[12] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller,
“Dynamic metadata management for petabyte-scale file systems,” in
Proceedings of the 2004 ACM/IEEE Conference on Supercomputing
(SC ’04). Pittsburgh, PA: ACM, Nov. 2004. [Online]. Available:
http://www.ssrc.ucsc.edu/Papers/weil-sc04.pdf

[13] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.,
“Semantic file systems,” in Proceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP ’91). ACM, Oct. 1991,
pp. 16–25. [Online]. Available: http://www.ssrc.ucsc.edu/PaperArchive/
gifford-sosp91.pdf

[14] Y. Padioleau and O. Ridoux, “A logic file system,” in Proceedings of
the 2003 USENIX Annual Technical Conference, San Antonio, TX,
June 2003, pp. 99–112. [Online]. Available: http://www.ssrc.ucsc.edu/
PaperArchive/padioleau-usenix03.pdf

[15] J. C. Mogul, “Representing information about files,” Stamford Univ.
Deptartment of CS, Tech. Rep. 86-1103, Mar 1986, ph.D. Thesis.

[16] C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S. Potti,
“A File System for Information Management,” in Proceedings of the
ISMM International Conference on Intelligent Information Management
Systems, March 1994, nebula FS.

[17] C. E. Wills, D. Giampaolo, and M. Mackovitch, “Experience with an
Interactive Attribute-based User Information Environment,” in Proceed-
ings of the Fourteenth Annual IEEE International Phoenix Conference
on Computers and Communications, March 1995, pp. 359–365.

[18] S. Sechrest and M. McClennen, “Blending hierarchical and attribute-
based file naming,” in Proceedings of the 12th International Conference
on Distributed Computing Systems (ICDCS ’92), Yokohama, Japan,
1992, pp. 572–580.

[19] B. C. Neuman, “The prospero file system: A global file system
based on the virtual system model,” Computing Systems, vol. 5,
no. 4, pp. 407–432, 1992. [Online]. Available: citeseer.ist.psu.edu/
neuman92prospero.html

[20] B. Gopal and U. Manber, “Integrating content-based access mechanisms
with hierarchical file systems,” in Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI), Feb. 1999, pp.
265–278. [Online]. Available: http://www.ssrc.ucsc.edu/PaperArchive/
gopal-osdi99.pdf

[21] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. Ganger,
“Perspective: Semantic data management for the home.” in fast09,
M. I. Seltzer and R. Wheeler, Eds. USENIX, 2009, pp. 167–182.
[Online]. Available: http://dblp.uni-trier.de/db/conf/fast/fast2009.html#
SalmonSCG09

[22] Apple Developer Connection, “Working with Spotlight,”
http://developer.apple.com/macosx/tiger/spotlight.html, 2004.

[23] Beagle Project, “About beagle,” http://beagle-project.org/About, 2007.
[Online]. Available: http://beagle-project.org/About

[24] MSDN, “Indexing service,” http://msdn.microsoft.com/en-
us/library/aa163263.aspx, 2008.

[25] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
“Spyglass: Fast, scalable metadata search for large-scale storage
systems,” in Proceedings of the 7th USENIX Conference on File
and Storage Technologies (FAST), Feb. 2009, pp. 153–166. [Online].
Available: http://www.ssrc.ucsc.edu/Papers/leung-fast09.pdf

[26] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in Proceedings of the 2006
USENIX Annual Technical Conference, 2006, pp. 43–56.

[27] D. A. Holland, U. Braun, D. Maclean, K.-K. Muniswamy-Reddy, and
M. Seltzer, “Choosing a data model and query language for provenance,”
in 2nd International Provenance and Annotation Workshop (IPAW’08),
June 2008.

[28] S. Abiteboul, D. Quass, J. Mchugh, J. Widom, and J. Wiener, “The
lorel query language for semistructured data,” International Journal on
Digital Libraries, vol. 1, pp. 68–88, 1997.

[29] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM
Comput. Surv., vol. 40, no. 1, pp. 1–39, 2008.

[30] I. L. Kaplan, G. M. Abdulla, S. T. Brugger, and S. R. Kohn, “Implement-
ing graph pattern queries on a relational database,” Lawrence Livermore
National Laboratory, Tech. Rep. LLNL-TR-400310, January 2009.

[31] M. A. Rodriguez, “graph databases and the future of large-scale
knowledge management”,” http://www.slideshare.net/slidarko/graph-
databases-and-the-future-of-largescale-knowledge-management, 2009.

[32] E. Eifrem, “A nosql overview and the benefits of graph databases,”
http://www.slideshare.net/emileifrem/nosql-east-a-nosql-overview-and-
the-benefits-of-graph-databases, 2009.

[33] Garlik, “4store - scalable rdf storage,” http://4store.org/, 2009.
[34] T. Neumann and G. Weikum, “The rdf-3x engine for scalable manage-

ment of rdf data,” The VLDB Journal, vol. 19, no. 1, pp. 91–113, 2010.
[35] E. Prud’hommeaux and A. Seaborne, “Sparql query language for rdf,”

http://www.w3.org/TR/rdf-sparql-query/, 2007.
[36] N. Technology, “The neo database,” http://dist.neo4j.org/neo-

technology-introduction.pdf, 2006.
[37] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,

“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th Annual
Southeast Regional Conference, ser. ACM SE ’10. New York,
NY, USA: ACM, 2010, pp. 42:1–42:6. [Online]. Available: http:
//doi.acm.org/10.1145/1900008.1900067

[38] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS: a
parallel file system for Linux clusters,” in Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, GA, Oct. 2000, pp.
317–327. [Online]. Available: http://www.ssrc.ucsc.edu/PaperArchive/
carns-linux00.pdf

[39] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel file
system testing for the lunatic fringe: The care and feeding of restless
i/o power users,” in MSST ’05: Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems and Technologies.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 3–17.

[40] M. Szeredi, “File System in User Space README,”
http://www.stillhq.com/extracted/fuse/README, 2003.

[41] E. A. Brewer, Readings in Database Systems, 4th ed. MIT Press, 2004,
ch. Combining Systems and Databases: A Search Engine Retrospective.

[42] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes. Morgan
Kaufmann Publishers, 1999.

[43] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek, “The Conquest
file system: Better performance through a disk/persistent-RAM hybrid
design,” ACM Transactions on Storage, vol. 2, no. 3, pp. 309–
348, 2006. [Online]. Available: http://www.ssrc.ucsc.edu/PaperArchive/
wang-tos06.pdf

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

